Zalety diody LED

Globalny rynek oświetleniowy przechodzi radykalną transformację napędzaną przez masowo rosnącą popularność technologii diod elektroluminescencyjnych (LED).Ta rewolucja w oświetleniu półprzewodnikowym (SSL) zasadniczo zmieniła podstawową ekonomię rynku i dynamikę branży.Technologia SSL umożliwiła nie tylko różne formy produktywności, przejście od technologii konwencjonalnych w kierunku Oświetlenie ledowe gruntownie zmienia również sposób, w jaki ludzie myślą o oświetleniu.Konwencjonalne technologie oświetleniowe zostały zaprojektowane przede wszystkim z myślą o zaspokojeniu potrzeb wizualnych.W przypadku oświetlenia LED coraz większą uwagę zwraca się na pozytywną stymulację biologicznego wpływu światła na zdrowie i samopoczucie ludzi.Pojawienie się technologii LED utorowało również drogę do konwergencji między oświetleniem a oświetleniem Internet rzeczy (IoT), który otwiera zupełnie nowy świat możliwości.Na początku było wiele zamieszania wokół oświetlenia LED.Szybki rozwój rynku i ogromne zainteresowanie konsumentów stwarzają palącą potrzebę wyjaśnienia wątpliwości związanych z technologią oraz poinformowania opinii publicznej o jej zaletach i wadach.

jak to zrobićes PROWADZONYpraca?

Dioda LED to pakiet półprzewodników składający się z matrycy LED (układu) i innych elementów zapewniających wsparcie mechaniczne, połączenie elektryczne, przewodnictwo cieplne, regulację optyczną i konwersję długości fali.Chip LED jest w zasadzie urządzeniem łączącym pn utworzonym przez przeciwstawnie domieszkowane złożone warstwy półprzewodników.Powszechnie używanym półprzewodnikiem złożonym jest azotek galu (GaN), który ma bezpośrednie pasmo wzbronione, co pozwala na większe prawdopodobieństwo rekombinacji radiacyjnej niż półprzewodniki z pośrednim pasmem wzbronionym.Kiedy złącze pn jest spolaryzowane w kierunku do przodu, elektrony z pasma przewodnictwa warstwy półprzewodnikowej typu n przemieszczają się przez warstwę graniczną do złącza p i rekombinują z dziurami z pasma walencyjnego warstwy półprzewodnikowej typu p w obszar aktywny diody.Rekombinacja elektron-dziura powoduje, że elektrony przechodzą w stan o niższej energii i uwalniają nadmiar energii w postaci fotonów (pakietów światła).Efekt ten nazywa się elektroluminescencją.Foton może przenosić promieniowanie elektromagnetyczne o wszystkich długościach fal.Dokładne długości fal światła emitowanego przez diodę są określone przez energetyczne pasmo wzbronione półprzewodnika.

Światło generowane przez elektroluminescencję w układ LEDma wąski rozkład długości fal z typową szerokością pasma kilkudziesięciu nanometrów.Emisje wąskopasmowe powodują, że światło ma jeden kolor, taki jak czerwony, niebieski lub zielony.Aby zapewnić źródło światła białego o szerokim spektrum, należy rozszerzyć szerokość widmowego rozkładu mocy (SPD) chipa LED.Elektroluminescencja z chipa LED jest częściowo lub całkowicie przekształcana przez fotoluminescencję w luminoforach.Większość białych diod LED łączy emisję krótkich fal z niebieskich chipów InGaN i ponownie emitowane światło o większej długości fali z luminoforów.Proszek luminoforu jest rozproszony w matrycy silikonowej, epoksydowej lub innej matrycy żywicznej.Matryca zawierająca luminofor jest powlekana na chipie LED.Białe światło można również wytwarzać poprzez pompowanie czerwonych, zielonych i niebieskich luminoforów za pomocą ultrafioletowego (UV) lub fioletowego chipa LED.W takim przypadku uzyskana biel może zapewnić doskonałe oddawanie barw.Ale to podejście ma niską wydajność, ponieważ dużemu przesunięciu długości fali związanemu z konwersją w dół światła UV lub światła fioletowego towarzyszy wysoka strata energii Stokesa.

ZaletyOświetlenie ledowe

Wynalezienie żarówek ponad sto lat temu zrewolucjonizowało sztuczne oświetlenie.Obecnie jesteśmy świadkami cyfrowej rewolucji oświetleniowej, którą umożliwia SSL.Oświetlenie oparte na półprzewodnikach nie tylko zapewnia bezprecedensowy projekt, wydajność i korzyści ekonomiczne, ale także umożliwia mnóstwo nowych zastosowań i propozycji wartości, które wcześniej uważano za niepraktyczne.Zwrot z wykorzystania tych zalet znacznie przewyższy stosunkowo wysoki koszt początkowy instalacji systemu LED, co do którego na rynku wciąż istnieją pewne wątpliwości.

1. Efektywność energetyczna

Jednym z głównych uzasadnień migracji do oświetlenia LED jest efektywność energetyczna.W ciągu ostatniej dekady skuteczność świetlna białych diod LED z konwersją luminoforu wzrosła z 85 lm/W do ponad 200 lm/W, co odpowiada sprawności konwersji mocy elektrycznej na optyczną (PCE) na poziomie ponad 60% przy standardowym prądzie roboczym gęstość 35 A/cm2.Pomimo poprawy wydajności niebieskich diod LED InGaN, luminoforów (wydajność i długość fali pasują do reakcji ludzkiego oka) i pakietu (rozpraszanie/absorpcja optyczna), Departament Energii USA (DOE) twierdzi, że pozostaje więcej miejsca na PC-LED Poprawa skuteczności i skuteczność świetlna na poziomie około 255 lm/W powinna być praktycznie możliwa niebieskie diody pompy.Wysoka skuteczność świetlna to niewątpliwa przewaga diod LED nad tradycyjnymi źródłami światła – żarowymi (do 20 lm/W), halogenowymi (do 22 lm/W), świetlówkami liniowymi (65-104 lm/W), świetlówkami kompaktowymi (46 lm/W). -87 lm/W), świetlówka indukcyjna (70-90 lm/W), para rtęci (60-60 lm/W), sodowa wysokoprężna (70-140 lm/W), kwarc metalohalogenkowy (64-110 lm/W) W) i ceramicznych metalohalogenkowych (80-120 lm/W).

2. Optyczna wydajność dostarczania

Poza znaczną poprawą skuteczności źródła światła, możliwość osiągnięcia wysokiej sprawności optycznej oprawy oświetleniowej za pomocą oświetlenia LED jest mniej znana ogółowi konsumentów, ale bardzo pożądana przez projektantów oświetlenia.Efektywne dostarczanie światła emitowanego przez źródła światła do celu było głównym wyzwaniem projektowym w branży.Tradycyjne lampy w kształcie żarówki emitują światło we wszystkich kierunkach.Powoduje to, że duża część strumienia świetlnego wytwarzanego przez lampę jest zatrzymywana w oprawie (np. przez odbłyśniki, dyfuzory) lub ucieka z oprawy w kierunku, który nie jest przydatny do zamierzonego zastosowania lub jest po prostu uciążliwy dla oka.Oprawy oświetleniowe HID, takie jak metalohalogenkowe i wysokoprężne sodowe, mają na ogół około 60% do 85% skuteczności w kierowaniu światła wytwarzanego przez lampę na zewnątrz oprawy.Nierzadko zdarza się, że oprawy typu downlight i plafony do wbudowania, które wykorzystują świetlówki lub halogenowe źródła światła, doświadczają 40-50% strat optycznych.Kierunkowy charakter oświetlenia LED umożliwia efektywne dostarczanie światła, a kompaktowa obudowa diod LED pozwala na wydajną regulację strumienia świetlnego za pomocą soczewek złożonych.Dobrze zaprojektowane systemy oświetlenia LED mogą zapewnić sprawność optyczną większą niż 90%.

3. Jednorodność oświetlenia

Jednolite oświetlenie jest jednym z głównych priorytetów w projektach oświetlenia otoczenia wewnętrznego i zewnętrznego/drogi.Jednorodność jest miarą relacji natężenia oświetlenia na danym obszarze.Dobre oświetlenie powinno zapewniać równomierny rozkład lumenów padających na powierzchnię lub obszar zadania.Ekstremalne różnice luminancji wynikające z nierównomiernego oświetlenia mogą prowadzić do zmęczenia wzroku, wpływać na wydajność wykonywania zadań, a nawet stanowić zagrożenie dla bezpieczeństwa, ponieważ oko musi przystosować się do powierzchni o różnej luminancji.Przejścia z jasno oświetlonego obszaru do obszaru o bardzo różnej luminancji spowodują przejściową utratę ostrości wzroku, co ma duży wpływ na bezpieczeństwo w zastosowaniach zewnętrznych, w których występuje ruch pojazdów.W dużych obiektach wewnętrznych równomierne oświetlenie przyczynia się do wysokiego komfortu wizualnego, pozwala na elastyczność lokalizacji zadań i eliminuje konieczność przenoszenia opraw.Może to być szczególnie korzystne w obiektach przemysłowych i handlowych wysokiego składowania, gdzie przenoszenie opraw oświetleniowych wiąże się ze znacznymi kosztami i niedogodnościami.Oprawy wykorzystujące lampy HID mają znacznie większe natężenie oświetlenia bezpośrednio pod oprawą niż obszary dalej od oprawy.Powoduje to słabą jednorodność (typowy stosunek maks./min. 6:1).Projektanci oświetlenia muszą zwiększyć gęstość opraw, aby zapewnić jednorodność oświetlenia spełniającą minimalne wymagania projektowe.Z kolei duża powierzchnia emitująca światło (LES) utworzona z szeregu małych diod LED zapewnia rozsył światła o jednorodności mniejszej niż 3:1 max/min, co przekłada się na lepsze warunki wizualne, a także znacznie zmniejszoną liczbę instalacji na terenie zadania.

4. Oświetlenie kierunkowe

Ze względu na kierunkowy wzór emisji i dużą gęstość strumienia, diody LED są z natury przystosowane do oświetlenia kierunkowego.Oprawa kierunkowa skupia światło emitowane przez źródło światła w ukierunkowanej wiązce, która wędruje nieprzerwanie od oprawy do obszaru docelowego.Wąsko skupione wiązki światła są używane do tworzenia hierarchii ważności poprzez zastosowanie kontrastu, aby wybrane elementy wyróżniały się z tła oraz aby dodać obiektowi zainteresowania i emocjonalnego uroku.Oprawy kierunkowe, w tym reflektory punktowe i naświetlacze, są szeroko stosowane w oświetleniu akcentującym w celu uwydatnienia lub podkreślenia elementu projektu.Oświetlenie kierunkowe jest również wykorzystywane w zastosowaniach, w których potrzebna jest intensywna wiązka, aby pomóc w wykonaniu wymagających zadań wizualnych lub zapewnić oświetlenie dalekiego zasięgu.Produkty służące temu celowi to latarki,reflektory, followspoty,światła drogowe pojazdu, reflektory stadionowe, itp. Oprawa LED może zapewnić wystarczającą moc strumienia świetlnego, niezależnie od tego, czy tworzy bardzo dobrze zdefiniowaną „twardą” wiązkę, zapewniającą wysoki dramatyzm Diody COBlub rzucić długą wiązkę daleko w daldiody LED dużej mocy.

5. Inżynieria spektralna

Technologia LED oferuje nową możliwość kontrolowania widmowego rozkładu mocy źródła światła (SPD), co oznacza, że ​​skład światła można dostosować do różnych zastosowań.Kontrola spektralna umożliwia zaprojektowanie widma z produktów oświetleniowych w taki sposób, aby angażowało określone ludzkie reakcje wzrokowe, fizjologiczne, psychologiczne, fotoreceptory roślinne, a nawet detektory półprzewodnikowe (np. kamera HD) lub kombinację takich odpowiedzi.Wysoką wydajność widmową można osiągnąć poprzez maksymalizację pożądanych długości fal oraz usuwanie lub redukcję szkodliwych lub niepotrzebnych części widma dla danego zastosowania.W zastosowaniach z białym światłem SPD diod LED można zoptymalizować pod kątem zalecanej wierności kolorów iskorelowana temperatura barwowa (CCT).Dzięki wielokanałowej konstrukcji z wieloma emiterami kolor wytwarzany przez oprawę LED można aktywnie i precyzyjnie kontrolować.Systemy mieszania kolorów RGB, RGBA lub RGBW, które są w stanie wytworzyć pełne spektrum światła, stwarzają nieskończone możliwości estetyczne dla projektantów i architektów.Systemy dynamicznej bieli wykorzystują diody LED multi-CCT, aby zapewnić ciepłe przyciemnianie, które naśladuje charakterystykę barwową lamp żarowych po przyciemnieniu, lub aby zapewnić regulowane białe oświetlenie, które umożliwia niezależną kontrolę zarówno temperatury barwowej, jak i natężenia światła.Oświetlenie skoncentrowane na człowiekuoparte na przestrajalna biała technologia LEDjest jednym z impulsów stojących za wieloma najnowszymi osiągnięciami technologii oświetleniowej.

6. Włączanie/wyłączanie

Diody LED włączają się z pełną jasnością niemal natychmiast (od jednej cyfry do dziesiątek nanosekund) i wyłączają się w dziesiątkach nanosekund.Z kolei czas nagrzewania się żarówki, czyli czas, w którym żarówka osiąga pełną moc świetlną, w przypadku świetlówek kompaktowych może trwać do 3 minut.Lampy HID wymagają kilkuminutowego rozgrzewania, zanim zapewnią użyteczne światło.Powtórny zapłon na gorąco jest o wiele większym problemem niż początkowy rozruch lamp metalohalogenkowych, które kiedyś były główną technologią stosowaną do oświetlenie wysokiego składowaniaI reflektory dużej mocyW obiekty przemysłowe,stadiony i areny.Przerwa w dostawie prądu w obiekcie z oświetleniem metalohalogenkowym może zagrozić bezpieczeństwu, ponieważ proces ponownego zapłonu lamp metalohalogenkowych trwa do 20 minut.Błyskawiczne uruchamianie i ponowne zapalanie na gorąco sprawiają, że diody LED znajdują się w wyjątkowej pozycji, aby skutecznie wykonywać wiele zadań.Nie tylko ogólne zastosowania oświetleniowe czerpią korzyści z krótkiego czasu reakcji diod LED, ale również wiele zastosowań specjalistycznych korzysta z tej możliwości.Na przykład światła LED mogą działać w synchronizacji z kamerami drogowymi, aby zapewnić przerywane oświetlenie do rejestrowania poruszającego się pojazdu.Diody LED włączają się od 140 do 200 milisekund szybciej niż żarówki.Przewaga czasu reakcji sugeruje, że światła hamowania LED są skuteczniejsze niż żarówki w zapobieganiu zderzeniom tylnym.Kolejną zaletą diod LED w operacji przełączania jest cykl przełączania.Częste przełączanie nie wpływa na żywotność diod LED.Typowe sterowniki LED do ogólnych zastosowań oświetleniowych są oceniane na 50 000 cykli przełączania, a wysokowydajne sterowniki LED rzadko wytrzymują 100 000, 200 000, a nawet 1 milion cykli przełączania.Na żywotność diod LED nie mają wpływu szybkie cykle (przełączanie wysokiej częstotliwości).Ta cecha sprawia, że ​​światła LED doskonale nadają się do dynamicznego oświetlenia i do użytku z elementami sterującymi oświetleniem, takimi jak czujniki obecności lub światła dziennego.Z drugiej strony częste włączanie/wyłączanie może skrócić żywotność lamp żarowych, HID i lamp fluorescencyjnych.Te źródła światła mają na ogół tylko kilka tysięcy cykli przełączania w ciągu swojej znamionowej żywotności.

7. Możliwość ściemniania

Zdolność do generowania strumienia świetlnego w bardzo dynamiczny sposób doskonale nadaje diodom LEDsterowanie ściemnianiem, podczas gdy lampy fluorescencyjne i HID słabo reagują na ściemnianie.Ściemnianie lamp fluorescencyjnych wymaga stosowania drogich, dużych i skomplikowanych obwodów elektrycznych w celu utrzymania wzbudzenia gazowego i warunków napięciowych.Ściemnianie lamp HID doprowadzi do krótszej żywotności i przedwczesnej awarii lampy.Lamp metalohalogenkowych i wysokoprężnych lamp sodowych nie można ściemniać poniżej 50% mocy znamionowej.Reagują również na sygnały ściemniania znacznie wolniej niż diody LED.Ściemnianie diod LED można wykonać albo poprzez stałą redukcję prądu (CCR), która jest lepiej znana jako ściemnianie analogowe, albo poprzez zastosowanie modulacji szerokości impulsu (PWM) do diody LED, czyli ściemniania cyfrowego.Analogowe ściemnianie steruje prądem napędowym przepływającym do diod LED.Jest to najczęściej stosowane rozwiązanie ściemniania do ogólnych zastosowań oświetleniowych, chociaż diody LED mogą nie działać dobrze przy bardzo niskim prądzie (poniżej 10%).Ściemnianie PWM zmienia cykl pracy modulacji szerokości impulsu, aby uzyskać średnią wartość na jego wyjściu w pełnym zakresie od 100% do 0%.Sterowanie ściemnianiem diod LED pozwala dostosować oświetlenie do potrzeb człowieka, zmaksymalizować oszczędność energii, umożliwić mieszanie kolorów i strojenie CCT oraz wydłużyć żywotność diod LED.

8. Kontrolowalność

Cyfrowy charakter diod LED ułatwia bezproblemową integrację czujniki, procesory, kontrolery i interfejsy sieciowe w systemy oświetleniowe w celu wdrażania różnych inteligentnych strategii oświetleniowych, od oświetlenia dynamicznego i oświetlenia adaptacyjnego po wszystko, co przyniesie IoT.Dynamiczny aspekt oświetlenia LED obejmuje zarówno proste zmiany kolorów, jak i skomplikowane pokazy świetlne w setkach lub tysiącach indywidualnie sterowanych węzłów oświetleniowych oraz złożone tłumaczenie treści wideo do wyświetlania na systemach matrycowych LED.Technologia SSL jest sercem dużego ekosystemu połączone rozwiązania oświetleniowektóre mogą wykorzystywać zbieranie światła dziennego, wykrywanie obecności, kontrolę czasu, wbudowane programowanie i urządzenia podłączone do sieci do sterowania, automatyzacji i optymalizacji różnych aspektów oświetlenia.Migracja sterowania oświetleniem do sieci opartych na protokole IP umożliwia inteligentnym, wyposażonym w czujniki systemom oświetleniowym współpracę z innymi urządzeniami Sieci IoT.Otwiera to możliwości tworzenia szerokiej gamy nowych usług, korzyści, funkcjonalności i strumieni przychodów, które zwiększają wartość systemów oświetlenia LED.Sterowanie systemami oświetlenia LED może być realizowane za pomocą różnych przewodowych ikomunikacja bezprzewodowaprotokoły, w tym protokoły sterowania oświetleniem, takie jak 0-10V, DALI, DMX512 i DMX-RDM, protokoły automatyki budynkowej, takie jak BACnet, LON, KNX i EnOcean oraz protokoły wdrażane na coraz popularniejszej architekturze mesh (np. ZigBee, Z-Wave, Bluetooth Mesh, wątek).

9. Elastyczność projektowania

Niewielki rozmiar diod LED pozwala projektantom opraw na tworzenie źródeł światła o kształtach i rozmiarach odpowiednich do wielu zastosowań.Ta cecha fizyczna daje projektantom większą swobodę wyrażania ich filozofii projektowania lub komponowania tożsamości marki.Elastyczność wynikająca z bezpośredniej integracji źródeł światła daje możliwość tworzenia produktów oświetleniowych, które stanowią idealne połączenie formy i funkcji.Oprawy oświetleniowe LEDmożna stworzyć, aby zatrzeć granice między projektowaniem a sztuką w zastosowaniach, w których wymagany jest dekoracyjny punkt centralny.Można je również zaprojektować tak, aby wspierały wysoki poziom integracji architektonicznej i wtapiały się w dowolną kompozycję projektową.Oświetlenie półprzewodnikowe napędza nowe trendy projektowe również w innych sektorach.Wyjątkowe możliwości stylizacji pozwalają producentom pojazdów projektować wyróżniające się reflektory i tylne światła, które nadają samochodom atrakcyjny wygląd.

10. Trwałość

Dioda LED emituje światło z bloku półprzewodnika, a nie ze szklanej bańki lub rurki, jak ma to miejsce w przypadku starszych lamp żarowych, halogenowych, fluorescencyjnych i HID, które wykorzystują włókna lub gazy do generowania światła.Urządzenia półprzewodnikowe są zwykle montowane na płytce drukowanej z metalowym rdzeniem (MCPCB), z połączeniem zwykle zapewnianym przez lutowane przewody.Brak kruchego szkła, ruchomych części i pęknięć żarnika sprawia, że ​​systemy oświetlenia LED są wyjątkowo odporne na wstrząsy, wibracje i zużycie.Trwałość półprzewodnikowa systemów oświetlenia LED ma oczywiste wartości w różnych zastosowaniach.W obiekcie przemysłowym są miejsca, w których oświetlenie jest narażone na nadmierne wibracje spowodowane dużymi maszynami.Oprawy instalowane wzdłuż jezdni i tuneli muszą wytrzymywać powtarzające się wibracje powodowane przez ciężkie pojazdy przejeżdżające z dużą prędkością.Wibracje to typowy dzień pracy reflektorów roboczych montowanych na pojazdach, maszynach i urządzeniach budowlanych, górniczych i rolniczych.Przenośne oprawy oświetleniowe, takie jak latarki i latarnie kempingowe, są często narażone na upadki.Istnieje również wiele zastosowań, w których zepsute lampy stanowią zagrożenie dla użytkowników.Wszystkie te wyzwania wymagają wytrzymałego rozwiązania oświetleniowego, które jest dokładnie tym, co może zaoferować oświetlenie półprzewodnikowe.

11. Żywotność produktu

Długa żywotność wyróżnia się jako jedna z głównych zalet oświetlenia LED, ale twierdzenia o długiej żywotności oparte wyłącznie na wskaźniku żywotności pakietu LED (źródła światła) mogą być mylące.Okres użytkowania pakietu LED, lampy LED lub oprawy oświetleniowej LED (opraw oświetleniowych) jest często podawany jako punkt w czasie, w którym strumień świetlny spadł do 70% początkowej mocy wyjściowej, czyli L70.Zazwyczaj diody LED (zestawy diod LED) mają żywotność L70 między 30 000 a 100 000 godzin (przy Ta = 85 ° C).Jednak pomiary LM-80, które są wykorzystywane do przewidywania żywotności L70 pakietów LED metodą TM-21, są wykonywane przy pakietach LED pracujących w sposób ciągły w dobrze kontrolowanych warunkach pracy (np. w środowisku o kontrolowanej temperaturze i zasilanych stałym prądem stałym prąd napędowy).Z kolei systemy LED w rzeczywistych zastosowaniach są często narażone na większe przeciążenia elektryczne, wyższe temperatury złączy i trudniejsze warunki środowiskowe.Systemy LED mogą doświadczać przyspieszonej konserwacji strumienia świetlnego lub wręcz przedwczesnej awarii.Ogólnie,Lampy LED (żarówki, świetlówki)mają żywotność L70 od 10 000 do 25 000 godzin, zintegrowane oprawy LED (np. oświetlenie wysokiego składowania, oświetlenie uliczne, oprawy typu downlight) mają żywotność od 30 000 godzin do 60 000 godzin.W porównaniu z tradycyjnymi produktami oświetleniowymi – żarowymi (750-2000 godzin), halogenowymi (3000-4000 godzin), świetlówkami kompaktowymi (8000-10 000 godzin) i metalohalogenkowymi (7500-25 000 godzin), systemy LED, w szczególności oprawy zintegrowane, zapewniają znacznie dłuższą żywotność.Ponieważ światła LED praktycznie nie wymagają konserwacji, zmniejszone koszty konserwacji w połączeniu z dużymi oszczędnościami energii wynikającymi z używania świateł LED przez dłuższy czas ich eksploatacji stanowią podstawę wysokiego zwrotu z inwestycji (ROI).

12. Bezpieczeństwo fotobiologiczne

Diody LED są fotobiologicznie bezpiecznymi źródłami światła.Nie emitują promieniowania podczerwonego (IR) i emitują znikomą ilość światła ultrafioletowego (UV) (mniej niż 5 uW/lm).Lampy żarowe, fluorescencyjne i metalohalogenkowe przetwarzają odpowiednio 73%, 37% i 17% zużywanej energii na energię podczerwieni.Emitują również w obszarze UV ​​widma elektromagnetycznego — żarówki (70-80 uW/lm), świetlówki kompaktowe (30-100 uW/lm) i metalohalogenkowe (160-700 uW/lm).Przy wystarczająco wysokim natężeniu źródła światła emitujące światło UV lub IR mogą stanowić zagrożenie fotobiologiczne dla skóry i oczu.Ekspozycja na promieniowanie UV może powodować zaćmę (zmętnienie normalnie przezroczystej soczewki) lub fotokeratitis (zapalenie rogówki).Krótkotrwała ekspozycja na wysokie poziomy promieniowania podczerwonego może spowodować termiczne uszkodzenie siatkówki oka.Długotrwała ekspozycja na wysokie dawki promieniowania podczerwonego może wywołać zaćmę dmuchacza szkła.Dyskomfort termiczny powodowany przez system oświetlenia żarowego od dawna jest irytujący w branży medycznej, ponieważ konwencjonalne lampy do zadań chirurgicznych i lampy do gabinetów dentystycznych wykorzystują żarowe źródła światła do wytwarzania światła o wysokiej wierności kolorów.Wiązka o dużym natężeniu wytwarzana przez te oprawy dostarcza dużą ilość energii cieplnej, która może sprawić, że pacjenci poczują się bardzo niekomfortowo.

Nieuchronnie dyskusja ntbezpieczeństwo fotobiologiczneczęsto skupia zagrożenie światłem niebieskim, które odnosi się do fotochemicznego uszkodzenia siatkówki w wyniku ekspozycji na promieniowanie o długości fal, głównie między 400 nm a 500 nm.Powszechnym błędnym przekonaniem jest to, że diody LED mogą częściej powodować zagrożenie światłem niebieskim, ponieważ większość białych diod LED konwertowanych na luminofor wykorzystuje niebieską pompę LED.DOE i IES wyjaśniły, że produkty LED nie różnią się od innych źródeł światła, które mają tę samą temperaturę barwową w odniesieniu do zagrożenia światłem niebieskim.Diody LED z konwersją luminoforową nie stwarzają takiego ryzyka nawet przy ścisłych kryteriach oceny.

13. Efekt promieniowania

Diody LED wytwarzają energię promieniowania tylko w widzialnej części widma elektromagnetycznego od około 400 nm do 700 nm.Ta charakterystyka widmowa daje lampom LED cenną przewagę w zastosowaniach nad źródłami światła, które wytwarzają energię promieniowania poza widmem światła widzialnego.Promieniowanie UV i IR z tradycyjnych źródeł światła nie tylko stwarza zagrożenie fotobiologiczne, ale także prowadzi do degradacji materiałów.Promieniowanie UV jest niezwykle szkodliwe dla materiałów organicznych, ponieważ energia fotonów promieniowania w paśmie widmowym UV jest wystarczająco wysoka, aby wytworzyć ścieżki bezpośredniego rozrywania wiązań i fotoutleniania.Wynikające z tego rozerwanie lub zniszczenie chromoforu może prowadzić do pogorszenia jakości materiału i odbarwienia.Zastosowania muzealne wymagają filtrowania wszystkich źródeł światła, które generują promieniowanie UV przekraczające 75 uW/lm, aby zminimalizować nieodwracalne uszkodzenia dzieł sztuki.Podczerwień nie wywołuje tego samego rodzaju uszkodzeń fotochemicznych, jakie powoduje promieniowanie UV, ale nadal może przyczyniać się do uszkodzeń.Podwyższenie temperatury powierzchni przedmiotu może spowodować przyspieszenie aktywności chemicznej i zmian fizycznych.Promieniowanie IR o dużym natężeniu może powodować utwardzanie powierzchni, odbarwianie i pękanie obrazów, psucie się produktów kosmetycznych, wysychanie warzyw i owoców, topienie czekolady i wyrobów cukierniczych itp.

14. Bezpieczeństwo pożarowe i przeciwwybuchowe

Zagrożenia pożarem i ekspozycją nie są charakterystyczne dla systemów oświetlenia LED, ponieważ dioda LED przekształca energię elektryczną w promieniowanie elektromagnetyczne poprzez elektroluminescencję w obudowie półprzewodnikowej.Kontrastuje to ze starszymi technologiami, które wytwarzają światło poprzez podgrzewanie żarników wolframowych lub wzbudzanie ośrodka gazowego.Awaria lub niewłaściwa obsługa może spowodować pożar lub wybuch.Lampy metalohalogenkowe są szczególnie narażone na ryzyko wybuchu, ponieważ kwarcowy jarznik działa przy wysokim ciśnieniu (od 520 do 3100 kPa) i bardzo wysokiej temperaturze (od 900 do 1100 °C).Awarie jarznika niepasywnego spowodowane przez koniec okresu eksploatacji lampy, awarie statecznika lub użycie niewłaściwej kombinacji lampy i statecznika mogą spowodować pęknięcie bańki zewnętrznej lampy metalohalogenkowej.Gorące fragmenty kwarcu mogą zapalić łatwopalne materiały, łatwopalne pyły lub wybuchowe gazy/opary.

15. Komunikacja w świetle widzialnym (VLC)

Diody LED można włączać i wyłączać z częstotliwością większą niż ludzkie oko.Ta niewidoczna możliwość włączania/wyłączania otwiera nowe zastosowanie dla produktów oświetleniowych.LiFi (wierność światła) Technologia ta spotkała się z dużym zainteresowaniem w branży komunikacji bezprzewodowej.Wykorzystuje sekwencje „ON” i „OFF” diod LED do przesyłania danych.W porównaniu z obecnymi technologiami komunikacji bezprzewodowej wykorzystującymi fale radiowe (np. Wi-Fi, IrDA i Bluetooth), LiFi obiecuje tysiąckrotnie większą przepustowość i znacznie wyższą prędkość transmisji.LiFi jest uważane za atrakcyjną aplikację IoT ze względu na wszechobecność oświetlenia.Każda dioda LED może służyć jako optyczny punkt dostępowy do bezprzewodowej transmisji danych, o ile jej sterownik jest w stanie przekształcić przesyłane strumieniowo treści w sygnały cyfrowe.

16. Oświetlenie DC

Diody LED to niskonapięciowe urządzenia zasilane prądem.Ta natura pozwala oświetleniu LED wykorzystywać sieci dystrybucyjne prądu stałego niskiego napięcia (DC).Wzrasta zainteresowanie systemami mikrosieci prądu stałego, które mogą działać niezależnie lub w połączeniu ze standardową siecią elektroenergetyczną.Te sieci energetyczne na małą skalę zapewniają ulepszone interfejsy z generatorami energii odnawialnej (słonecznej, wiatrowej, ogniw paliwowych itp.).Lokalnie dostępne zasilanie DC eliminuje potrzebę konwersji prądu AC-DC na poziomie sprzętu, co wiąże się ze znaczną utratą energii i jest częstym punktem awarii w systemach LED zasilanych prądem przemiennym.Z kolei wysokowydajne oświetlenie LED poprawia autonomię akumulatorów lub systemów magazynowania energii.Ponieważ komunikacja sieciowa oparta na protokole IP nabiera rozpędu, Power over Ethernet (PoE) pojawił się jako opcja mikrosieci o niskim poborze mocy, dostarczająca prąd stały o niskim napięciu przez ten sam kabel, który dostarcza dane Ethernet.Oświetlenie LED ma wyraźne zalety w wykorzystaniu mocnych stron instalacji PoE.

17. Praca w niskiej temperaturze

Oświetlenie LED doskonale sprawdza się w niskich temperaturach.Dioda LED przekształca energię elektryczną w moc optyczną poprzez wtrysk elektroluminescencji, która jest aktywowana, gdy dioda półprzewodnikowa jest spolaryzowana elektrycznie.Ten proces uruchamiania nie jest zależny od temperatury.Niska temperatura otoczenia ułatwia odprowadzanie ciepła odpadowego generowanego przez diody LED, a tym samym chroni je przed statyzmem termicznym (spadek mocy optycznej w podwyższonych temperaturach).Natomiast praca w niskich temperaturach jest dużym wyzwaniem dla lamp fluorescencyjnych.Aby uruchomić lampę fluorescencyjną w zimnym otoczeniu, potrzebne jest wysokie napięcie do zajarzenia łuku elektrycznego.Lampy fluorescencyjne tracą również znaczną część swojej znamionowej mocy świetlnej w temperaturach poniżej zera, podczas gdy diody LED działają najlepiej w niskich temperaturach — nawet do -50°C.Dlatego światła LED idealnie nadają się do stosowania w zamrażarkach, lodówkach, chłodniach i zastosowaniach zewnętrznych.

18. Wpływ na środowisko

Światła LED mają znacznie mniejszy wpływ na środowisko niż tradycyjne źródła światła.Niskie zużycie energii przekłada się na niską emisję dwutlenku węgla.Diody LED nie zawierają rtęci, dzięki czemu powodują mniej komplikacji środowiskowych po zakończeniu okresu eksploatacji.Dla porównania, utylizacja lamp fluorescencyjnych i HID zawierających rtęć wymaga stosowania ścisłych protokołów utylizacji odpadów.


Czas postu: 04-02-2021